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PREFACE

Decision making is an issue constantly before oiier the developer or

user of U.S. Air Force space, missile, tactical, or ctho, systems. Yit

since Howard's significant work of over 12 years ago there has been little

progress in this area on the important methods pioneered by Howard. Because

of the importance of this area to applied Air Force needs the nwerous results

embodied in this research report were developed and illustrated through

numerous examples presented herein.

This research report was prupltred under research ccntracts supported by

the U.S. Air Force Officu of Scientific Research under AFOSR Grcnt No. 72-2166.

Design of Aerospace System, and the U.S. Air Force Space and Missile Systems

Organization under Contract No. F04.l.72-C-0273, Advanced Space G6idance,

and this report constitutes part of the final 'oport under these contrac ts.

The research described in this report "Bayetian Decision Theory Applied

To The Finite State Markov Decision Problem," UCLA-ENG-7278, by William Rosb

Osgood, was carried out under the direction of C.T. Leondes and E.B. Stear,

Co-Principal Investigators in the Schools of Engineering in the University

of California at Los Angeles and Santa BeTbar, respectively.
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ABSTRACT

Ron Howard solved the Markov decision problem with perfect

knowledge of all the transition probabilities and revards. in a

practical situation, the transition probabilities may nl be known

exactly. Therefore, the problem this research attacks is the Markov

decision problem with uncertain transition probabilities.

In the case of perfect knowledge, the decision that maximizes

the expected reward or gain is chosen. When there is uncertainty

in the transition probabilities, the gaines become random variablc.

Therefore, Bayesian decision theory is applied to this problem. A

loss function is defined and an a priori d-msity is defined. Bayes'

formula and the loss function are used to compute a risk for each

d decision. The decision that minimizes the risk is chosen.

Conceptually the problem is solved easily. However, trans-

forming a density over the transitin probabilities to a density over

the gains Is a difficult problem. The solution of this problem is the

main contribution of this dissertation. Using these results a

technique is derived that allows a straightforward means to evaluate

the risks for each decision. Examples are presented that illustrate

II the technique.

The result of this rtvewrch is a logical method to compute the

risks associated with each decision when there is uncertainty over

the transition probabilities. The decision maker then selects t ,e

decision that minimizes the risr.
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Chapter I
p-

PROBLEM DEFINITION

The objective of this research is to apply Bayesian decision

theory to the finite state Markov decision problem when the transi-

tion probabilities are unknown. A Markov decision problem exists

when a decision maker has available a set of K der.isions. Each

decision specifies a particular Markov-chain and a set of rewards.

The decision maker selects the decision that maximizes his gain or

expected reward.

I Bayesian decision -,eory can be used when there is uncertainty

t over the transition probabilitiev. An a priori density is specified

over the probabilities and Bayes' formula is used to compute an up-

dated posteriori density after observations are recorded. The de-

cision maker selects the decision that minimizes his expected loss

or risk. As more observations are recorded the posteriori density

concentrates its probability mass over the actval values of the transi-

tion probabilities and the risk minimnizing decision maximizes the

gain.

It is assumed that the reader has latowledge of the theory of

Markov chains (see Reference [7) ). The following notation is used

in this dissertation. There are N states in the Markov chain under

consideration. The probability of mrking a transition from state i
to state j is denoted by pi" The NxN transition matrix is denoted

by P. The steady state probability vector is denoted by 1!.

I4



w " " I' . ' -.. . .. .

A knowledge of Bayesian decision theory is also assumed (See

Reference (3] ). The following notation is used. The states of nature

is denoted by 0 . The observation is written as x n . The a priori

density over 0 is 9 (w) where w is an element of 0. The posteriori

density is denoted by 9(w n) and is computed from Bayes' formula,

lUx IW) 9 (w)
9 (w -x)= I

Ux W) w) vdw

where I(Xn' w) Is the likelihood function. For each element w of 0

and each decision k, a lo e L(k w) is incurred. The risk P(k) is the

expected loss,

p(k)- L(klw) 9(w{N ) dw

Bayes decision k* minimizes the risk,

p(k) = min f p(i)}
~i

1. 1 The Markov Decision Problem

Once a Markov chain is defined, a reward structure can be

placed over the states. Suppose that payoff ri is received when state

i is occupied. The N-vector r= (r I , ... , rN) is called the reward

vector associated with the N-state Markov chain. In steady state,

the expected payoff or gain is denoted by A where



N

N. rirri

,<r, T >

,, Now, suppose that there are K decisions available to a decision

maker. Each decision i, 1,..., K, specifies a unique N-state

Markov chain with transition matrix PiV The corresponding reward

p vector is denoted by r. The gain under decision i is denoted by A

where

and - -

The decision makez iielects tue decision that maximizes his expected

payoff or gain. In otherwords, he will select decision k* such that

*= max IAi}

l<i< K

1. 2 The Markov Decision Problem with Uncertainty

The Markov decision problem defined above assumes that all

transition probabilities and rewards are known with certainty. How-

ever, there may be a case where there is uncertainty in some or all

of the transition probabilities and/or rewards. The case of perfect

information was developed by Ron Howard [7] in 1960. After Howard

completed his work others at MIT continued to investigate this

problem with uncertainties. The goal of these works should have

( been to specify the "best" decision against some criterion. However,

3



their work, summarized by Martin [9) in 1967, did not include a

means to specify a decision.

This research applies Bayesian decision theory to the Markov

decision problem so that a decisior can be specified under uncer-

tainty. The transition probabilities are taken as uncertain, but the a
rewards are -.ssumed known.

Martin showed that if the .states of nature are the set of all

possible, transition matrices, and the matrix beta density is used as

the a priori density, then Bayes formula transforms observations of

state transitions into a posteriori density that is also matrix beta.

Therefore, the states of nature is defined, as .3

(AN AN ,.AN}

where AN is the set of all possible NxN transition matrices under

decision i. An element of Ois denoted by w where

W= (Pit P 2"'"- PK )  0)

and Pi is the transition matrix under decision i.

The end product in applying Bayesian decision theory is a risk

associated with each decision. The risk is defined as the expected

loss. If L(i w) associates a loss to each decision i when we ( Is the

state of nature, then the risk p(i) becomes 9

p(i) E L(i w)

=fL(i~ v t(w I x. dw

4
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where C(wl ) is the posteriori density over Q2. The decision maker's

objective is to maximize his gain, therefore the loss will be defined

in terms of the gain. Take element w c C1 where

W = (P I P""1 PK )

To each Pi the steady state probability vector ri can be computed.

Then, for each decision i the gain Ai is given by

Suppose decision i is selected resulting In a payoff of Ai units per

transitior But, if there is a A j = I, .. . , K such that A. >Ai then

the decisior, maker suffers a loss of at least - Ai per transition

because he selected decision I instead of decision j. The loss func-

tion L(if w) is defined as the maximtun loss and is given by

L(i w) max IA.
l:Sj< K3

Thus, for each we 0, L(ijw) is the maximum loss-per transition when

decision I is chosen.

In order to calculate the risk, the expression max Ia. -

must be written in terms of w= (P.I" PK. " Gain Ai is written as

Ai = r ri >
IoI

10The problem with this expressior is that i must be specified as an

explicit function of PV. Since the steady state probability vector n

is uniquely related to its transition matrix P by ri PrtP

II
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the existence of a iunctiou =1 =(Pi) has some intuitive appeal.

Now, gain &I is written as

Ai = <2(pi ' -i >

This expression is substituted to get the desired expression

L(i I v = maux f{co(Pj). 2J >- < O(P), 2A>)11l5IT)C

The risk function becomes

-3-
041 Vi =,...,K (1.2)

The decision maker continues to make observations x until he is

satisfied that the posteriori density has concentrated a sufficient

amount of'probability mass over the actual collection of transition

matrices. Then the risk is computed. The decision that minimizes

the risk is chosen.

The problem is to evaluate Equation 1.2. In picking the risk

minimizing decision, the absolute value of the risk is not important.

That is, the decision the results in the smallest risk, whatever its

value, is chosen. Suppose that risk p(i) is used as a reference. The

minimum risk p(k*) will satisfy,

p(k*) - p(1),< o(k) - p(i) k=l, #.. ,K (1.3)

An alternate way of expressing Equation 1. 3 is to say that k* satisfies

the expression,
4
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p(k*) - p(li) min p(k) - 0(i)_
k

Now, the expression p(i). p(k) is evaluated by substituting Equation I
i p 1. 2,

p(i)- p(k) = f f j  I I

9(wjx ) dw
-Ii

- f1 < lk >. <2(l)lri >) C(wx ) dw

I ) k IIt~ f 9(w x ('Idw - f <.Z(P), r > g(ajx) dw

Thus, expression p(i" - p(k*) is given by

p(i) - p(k*) = min {E(Ak I) - E(Ailx)} (1.5)

Define function 1it(k) by

11(k) = E(Ai Ix) - E(AkIx) (1.6)

The decision k* that minimizes the risk minimizes 11(k),1i(k,) = rin fl i(k)

Therefore, the problem of evaluating the risk for each decision is
I( transformed to a problem of evaluating function 1i(k) for each decision

71



C',

k=l. . , K.

The expected value of the gain E(6kIX) k=l,..., K cannot be

computed is a straightforward manner. The procedure required is

developed by first looking at a general case in Chapter 2 where there

is one Markov chain (one gain) and the uncertainty over the transition

matrix is a general function h p(P). The expected value of the gain

is E(A). In Chapter 3 the density over the transition matrix is defined

as matrix beta and the observation x is used to compute the posteriori

density C(P In). The expected value of the gain conditioned on the

observation is E(A k,). In Chapter 4 decisions are introduced. The

results of Chapter 3 are used to compute E(6k0W) for each decision

k=l,. . . , K. The risk minimizing decision k* is selected by using

Equation 1. 6. An example is presented that illustrates the procedure

developed.

Two secondary issues are discussed in Chapters 5 and 6. In

Chapter 5 the possibility of specifying the uncertainty over the steady

state probabilities rather than the transition probabilities is explored.

In Chapter 6 the theory used to evaluate the expected value of the

gains is used to investigate the convergence properties of two state

Markov chains.

The results of this research are summarized in Chapter 7 and

several topics for future research are outlined.

8
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Chapter 2

COMPUTING THE EXPECTED VALUE OF THE GAIN

The objective of this Chapter is to compute the expected value

of the gain E(A) for the general case where there is one Markov chain

and the uncertainty over the transition matrix is given by density

hpVP). The gain Is, A =<_., >

-<(P), >

where the existence of function () is hypothesized. The expected

value of the gain could be expressed as

E()= <(P), r > hp(P) dP (2.1)
AN

where A N is the set of all possible NxN transition matrices. Even

though Equation 2. 1 looks simple enough there is a serious complica-
€N

tion. That is, set AN is not a closed and convex subset of Eucledian

space. This complicates the integration operation. What is required

is some transformation that allows Integration in Eucledian space.

The transition matrix P has N rows, each of which are proba-

bility vectors. The ith row is called the ith transition vector and is

denoted by pi. Suppose that E- is known with certainty. Clearly, this

knowledge conveys no information about p1, .. -i'Pi+'" ' ' RN ' In

other words, each row of P should be probabilistically independent.

Therefore, density hpAP) can be written as,

9



0!

NP) .. V N)•

where hi(P1) is a density function over the set the set of a11 N

dimensional probability vectors. Equation 2.1 becomes

t C)

E(A) , (P), r>,h(p).. (2.)

To see how a probability density hi(P) over 11N can be transformed C

to a density over a closed convex set, a two dimensional case is

examined.

Consider a two dimensionr- probability vector p = (p1. p 2 ). The
01

density over p is denoted by hp(P1, p2 ). Since p1 and p2 are con-

strained to satisfy th, conditions,

i) P1 ' P2 > 0

ii) pl + P2  1

the probability mass must lie over the line p1 + p2 = 1 in the positive

quatrant as drawn in Figure 2.1. A simpler way to characterize the

density would be to define it as a function of a single variable s where

a = 0 corresponds to p =(I, 0) and a =/Z corresponds to R =(0, 1), for

example. In this case the density over p is denoted by f (F) and is

drawn In Figure 2. 2. Notice that density hp(pl, p2 ) is transformed to

density f (s) where a belongs to the closed convex set

{o El I O_</Z}

Vector and scalar a are related through the equation

P (1, 0) + '(1,1)

101



C,

Sao

Figure Z. 2 Density he(s)



Now consider a two-dimensional transition matrix P. The

density over the first row is denoted by f1 (sl), and the density over 0!

the second row is denoted by f2 (.O. 'Since the rows of matrix P are

probabilistically independent, the density over matrix P, denoted by

fp, is given by 0

fp(t.) f ll) f 2(sl

where

t = ( )

A density f.,(t) is drawn in Figure 2.3. Notice again that the new

density fp(t) Is defined over a closed convex subset of E

This notion of expressing a two dimenstional probability vector

as A scalar is extended to the N state case Iin this Chapter. Density

hi(Pi) Is easily transformed to density fi(s.) where s" is a member of

set TM which is a subset of E . Density hP(P) ;s transformed to

density fp(t) where

f P) f1() I fN(-N)

t isIa i' "'" aN)

and t is a member of set T N = TNX... xT N (N times). IU will be shown

that Eql.rAtion 2.2 can be written as

N

T N
This expression can be evaluated either analytically for special MArkov

:halns or numerically on the computer.

12
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POW- .. ... J
In order to evaluate Equation 2. 3, function w(t) must-be derived,

density f P(I.) has to be transformed from h,(P), and matrix U and0
Cvector it have to be defined. The steps tak~en to evaluation Equation

2.3 are,

NC 1) Sets TN andTN are defined.
N N)

2) The transformations- that tAke probability -,ector In in

to vectrai TN ;'and-Aransition matrix P In A N to vector

t nTN are defined' Matrix U1 and vector n7 are defined.
in N -0

3) Functions .t)and o(p,) are dbrived.

4) Given a transitloh'nirix P anid density h,(P), the density

h17(IL)-over the steady-state probability vector Is sought.

~The ~a oriddesitf~s~iscomputed from density

f (P): Although this devOlopnitnt is not used In evaluating
Equation 2.3 ,It is Included because of its fundamental

importance. Equation 2. 3 could also be written as

E(A)f <sU, r >fn7 (!)48+ <T' *~>0

N

5) Equation 2.3 is evaluated.

N
2. 1 Sets T~ andN

All vectors in 11N have the following property. Given any two

probability vectors pand p., the difference vector B1 -P lies In

the hyperplane H defined by

H xEN <,e

14



Conceptually, probability vectors "touch" hyperplane H as shown in

$ *the three dimensional example drawn in Figure 2.4. Since every

probability vector can be uniquely represented by a point in H, the

set of all these points Is a closed convex subset of EN ' l. H is an

N-I dimensional hyperplane, therefore a basis xcan be constructed

in H where

!X

Then any vector i, c H is given by

Vector z with ,respect to basi' X is given by.,the N-I dimensional

vector s where

I (al , s2,.,, N- 1 )

Now, set x together with any vector 7r in 11N is clearly a basis of EN.
Since ,'' is a basis In EN , every vector p 6 1! can be

written as
N-i

R=' 5 iui +SNO
i l + -8N'Y

Vectorp- p N o lieu in H so

= <

-1 -s'N

15e 15J



-- - -- -~ Li

C)

0

P3

0

'ml

I
2

U

C)

Figure 2.4 set H in

'-S

.3
4'

I

7 
4

4~4

7

16



(w%

Therefore, aN I and vecto:' p with rotspect to basis 1x, r~ Is given

by

thSince the N component is always unity, a probability vector p will

10 have a unique representation In basis xgiven by the N-i dimensional

vector s where

The set of all probability vectors is given by 1N' 'To each

element p of H! the re -as uni ql~'.s in slet*,E' 1  The collection of
N~

,E representing all j-e 11N is ,denoted byTN where

T#{: t EN-I sU' ~1p Tt 6II,~ (2.4)

-: An NxN transition, matrix P can be represented by the NN

vector In ENx. . . xt,

where istel row of matrix P. Sinceeach I heIis avector inR~

it has a unique representation.E, in TN Therefore, matrix P has a
unique representation in net T'Nx. .xTN given by (1 ,s'2, AN)'

The ~set TNx.. .?TN is denoted by ath N Q (- 11 dimensional

vector I a denoted by t

2. 2 Transformations flN-T''andA -N4T.L

In this section the transformation that takes probability vectors

* Ito their representation in T N is derived. Also, the transformation

17
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that takes transition matrices in to their representation in TN is

derived.

First, the transformation from 1N to TN is specified. Vector'

P " r Lies in H if P 1N and is given by

N-1P "-2o ra 't 21-
il

The reciprocal basis Y= {lVz,...,VN of basis vectors X is

used to generate the expression 0

, > , N-i

Therefore, the representation s of probability vector p s&'isfies

20 ¢- ) V

where the columns of matrix V are the reciprocal basis vectors.

Take any vectors TN. Vector z sU lies In H so there is

a vector P U 1N such that p - = z or
rN

Next, the transformation from AN to TN Is ipecified. Take

any matrix P# AN. The rows of P lie in 1 . Vector si Is thb unique

representation of the Ith row pi where

184
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This expression specifies vector t ( (the representa-

tion of matrix P in set TN

Now, take any vector t e TN Vector z. s.U lies in H.
N- -1

There exists a vector i flN such that = + sU" If he ith row

of an NxN matrix P is taken as i then matrix P lies in AN.

2. 3 Specifying a Basis X

In this Section a particular basis yis specified. This basis is

used in many of the fut ure developments and examples.

Let e. be an N dimensional vector with all zero's except for

the ith component which is one. Since Tr can be any vector in IN
0 -

define n7 as'0

Se2.5)

Define the basis X by

I- i") i=l,..., N-1 (2.6)

In order that the vectors a, defined above are basis vectors of

H, each a, must lies in H and the collection X must be linearly in-

dependent. Vector I lies in H if <u 1 ,e > = 0. Substituting for a,

gives

I

19



To prove linear independence, take any vector c EN-I. If

X is a linearly independent collection then cU = 0 implies that c = 0.

Vector cU is given by

rN-1 N- 1
cU= c.e.,+1 -1 1F c]

=.(, l c.... NI(<l>,O ..L0

01 0 ci i . -1)(qe> ,

-(-<c'e >, c l c 2 , . . . , c N )

2 N-1

Clearly cU 0 implies that c = 0 and hence X is a linearly independent 0 I

collection.

The reciprocal basis Y satisfies

i~ ~ <v.1 ui> = 5ji'j=l, .,N-I1t

It can be easily shown that a reciprocal basis to x is given by

e i+, i=l,...,N-I (2.7)

Example 2. 1: Consider a three state Markov chain. A basis

for H, defined in Expression 2.6, is given by

X = - - 1 , 1 0

The reciprocal basis, defined in Expression 2.7, is given by

2
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Vectorsnof, -ulf u2, v1, and v 2 are shown in Figure 2.5.

Set TN in this basis is given by,

TN as EN - si(ei
i=l

ENI I +-N- -<e s>)- e e TN

or

TN s EN I (. (J/ -<es>), S/A/,..., SN I /q/lT) el"N

Since the above expression contains a probability vector, the com-

ponents must satisfy the conditions

i) 0 < - -<e- >)  I

Condition i) after some manipulation becomes

0<<e,$> <I4

Therefore, set TN is defined as

jeE sEN ljo<<e,,><,/', 0<8i<' ~,.Nl

Sets TN for N =2, 3, 4 are drawn in Figure 2.6.
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Figure 2. 5 Sets X and Y inE3
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1

0 IF 8,

' Figure 2. 6 Sets T Z, TV, and T4
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2.4 The Functions aAN - 11 and wTN

The steady state probability vector n can be implicitly computed 9

from matrix P by using Z-transforms or by computing the eigen

vector of matrix P correspondIng to the unity eigenvalue. In this

section an explicit expression n =,!(P) is derived and the desired

expression s a E(t) is specified.

2.4. 1 The Function _:AN-,lN

A barkov chain with N states and -rgodic transition matrix P 0

is given. The probability distribution over the states at time tn is

given by the N-vector (n). At time tn+ 1, after one transition, the

probability distribution over the state is

V W(n+I) := (U) P (2.8)

Since P Is ergodic 1n) converges to vector w, the steady state proba- 0

bility vector, as n-'u.

Define NxN matrix P0 by

0

Pc : o(2.9)

ZTo j

The rows of P are the vector * !Itn  Givon any vector p s 1 the
0 -0 N

following relationship holds,

I ~~ Po a n

Therefore,. - P0  0 for all p * flu.

24
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h
The expression wo - 1(u) PI is added to Equation 2.8 to get

j_(n+l) = -_(n) P + W T !(n) Po

Rearranging gives

.(n+l) = !(n) (P - P0) +n

The asymptotic behavior of this expression is

a- -P - Po) + Mo

Solving for n gives

Ur=T (I - P + P ' (. 0)

*) Equation 2. 10 specifies the mapping 2: P-. .

The following Theorem proves the existence of (I - P + Po)

when P is ergodic.

* Theorem 2. 1: If P is ergodic then (I - P + Po) ' I exists.

Proof: The Inverse of matrix (I - P + P exists if the null
- 0

space, denoted by N(I - P + Po), is void. Take any x e EN.

I* Vector x lies in the null space if

x(I - P + Po) :_C

or equivalently

25



x x--p "po0

i I Notice that <t n -0, e > r 0 for lal,.. sNo so P f a lies

any linrr combination of vectors In H will also lie In H.

iS Therefore the nall space is a subset of H.

Now, letx be any vector In H. Then x is written as

xx &U

IfeNO(I- PO ) t h e n .Q

01 u(I. -P + po) 0o

or

PI -=0P (.11)

N0

Matrix UP 0 Is evaluated In the following manne'r. The ij th

element Is sien by t

Wroj <.ui,e > i~=l,. .N

Since!!, lies In H, <.aie .>=: 0. Therefore, UP ° is the zero ,

matrix. Using this result, Equation A. 11 becomes

aU=UP

or

26:
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x =xP (2.12)
C,

Equation 2. 12 implies that vector x i H is an eigen vector

associated with the unity eigen value. However, when P is

o ergodic, the steady state probability vector is the unique eigen

vector associated with the unity eigen value (1]. Therefore,

x is the zero vector and the null space of matrix (I - P + PO)

C' Is void.
QED

Example 2. 1i Consider a two state Markov chain with transi-

tion matrix

[=/2 1/21

[1/4 3/4J

The eigen vector z associated with the unity eigen value satisfies

z = zP. Therefore,

0 Z I ( I z 2)

- (1/2 z I + 1/4 1/2 zI + 3/4 z)

or
0

Since z is a probability vector

(2

1 +2 3 1 1

arc

Z= (1/3, 2/3)

27
(

I[ ,



1 -

Now, take f-o as (1, 0) then matrix (I - P + P0 ) is given by

3/l-1/2

3/4 1/4)

Substituting Into Equation 2, 10 gives

3/2 -1/2

= (1,0) )
3/4 1/4

1,0 1/3 2/3)'( t .) 1 2

= (1/3, 2/3)

2.4. 2 The Function w:t a

The equation s = w(t) can be derived from equation ' = a(P),

using the transformations wV.s and P--t. However, the equation

s w(t) wiU be derived independent of Tr =(P).

Vector v_(n) can be expressed as

!!l(n) Tr +Efn) U

Substituting , this expression into Equation 2. 8 gives

s(n+l) U = .(n) UP + IP - I (2.13)

Using the identity UV = I, Equation 2.13 is transformed to

E(n4i) = sn) UPV + !o(PV - V) (2. 14)

The asymptotic behavior of Equation 2. 14 is given by

28
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~0

sh=suPvo (PV-V) (2. 15)

00

Matrix PV can be developed further. The ith row of nmatrix p

is given by

Therefore, matrix P satisfies

(P=Po+ SU (2. 16)

where matrix S is defined by

S=_

Post multiplying Expression 2.16 by V gives

PV = PoV + S (2.17)

since UV = I. Substitute Equation 2. 17 into Equation 2. 15 to get

_=_UPoV+8us+ n(PoV-V+S)
(0

Using the identity UP 0  0 and the fact that n P 'o

8 8US+ S

Solving for s gives

S T= S(I - US) (2.18)

Symbolically, Equation 2. 18 is written as
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I';

where

AI =-1-2'' A-N) .

The following Theorem proves the existence of (I - US)- when

P is ergodic.

Theorem 2. 2: If matrix P is ergodic, then (I - US)- exists.

Proof: Matrix I - US has an inverse if it has full rank. Ex-

pression I - US can be written as

I- US=I- UPV

= UV - UPV + UPoV

= U(I - P + P)V

Matrix I - P + P0 has rank N when P is ergodic. Matrices
U and V have rank N-I. Therefore, matrix U(I - P + P o)V

Is an N-IxN-1 matrix with rank N-i.

QED

Example 2. 3: Consider a two state Markov chain. Take -O

and U as defined previously

IT (1,0)

-o
u = (-1, 1)

Equation 2. 18 becomes

s(1, 0) 1 -,)}

and

30
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s= (2. 19)

C)2. 5 Computing: :i (sV1om f

teprobability distrbut':-,n over set A Nwas given as

eInsity~ beP- eltausf rmed-to density fp(jt). The pro-

KIC)r hil(pVoutnedin, h~etCatr Density fp(t) is trans-

fbrmed to denity fus)-~rth e 3 sing the equation s wt

If te ws on-tooneand continuous then the

don sty ffE),oud e smpy -p(, - (') However, the function

E(*)Is any:tooneand~he'n~ese et - 1(s) is dense inTN he-

for, dnsiy fj(! i coputd b fistconstructing the distribution
funcionove se T andthe~akng hederivative with respect to

The istibuionfuncion Ff isthe probability mass over

Theinvrsesetw' (A) Is given by

The distribution function can be written as
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,_
F,,(a) - /ff,1_,) da

A

or

F a) fpl(t) dt
_ (A)

4ill The density f~,4) is computed by taking the derivative of F (a) at
a=Sa

N-1

, , bNI Fn{ ) [(2.20)
" ~~~f. '--) - a . : a _;_

Consider the inverse set w- (A). The expression wt) < a can S

be written as

r. S (I - US) < a

using Equation 2. 18. Rearranging gives

(L+aU)S <a

Let vector I + &_U be represented by vector y, where

,il = (- <ae >,a ,,,,,aN)

if the basis X defined previously is used. Notice that when a e TN

then y a 1. Now, the expression yS is written as

S =t Ba

where

32



4N-

C- -<ale >

L -1 1N-1

aN.1 / 4' N-i

0 and IN- 1 is the (N-1)x(N-1) identity matrix. The notation B a is

employed to indicate that matrix Ba is a function of vector a.

Using the above development, the inverse set becomes

SW(A=t TNTN B<a (2.21)

Once vector a is selected, the above expression specifies a well

'0 defined subset of TN. In the N state case (N>2) both integration and
N

differentiation in TN can be carried out on the computer.

Example 2.4: Consider a two state Markov chain with reward

vector r. The density fP(t) = fl(sl)f 2 (s 2 ) is assumed known. Set A

is given by

A {. T16 }

and set w 1 (A) is

W-1(A T B

Expression tBa becomes

33- a
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a) + s2a

Therefore, set w'l(A) is

w- w(A) it.#T21ui(./Z -a) + sea</

and is drawn in Figure 2.7.

Density ff(a) is computed for two cases: <a <4 and
0< a< q12

I
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0

-1-

Figure2. 7 Set w (A)
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CASE I: /2 <a < 4

a0s +a= s

F,(A) f fi(io) f 2  )d 82. d o1

81=0 s82=0 28

I f f(l) g(o a) do,

Computing i(a) from Equation 2.20 gives

(a) f - / fl(Sl) g(sl, a)d,

f flli)- 9(8 l a ) d os I  
(2.22)

1=0

The function r g(Sl, a) is evaluated using Leibenitz's rule,

-a g l s ,,  a-) f 2.aI

( a14 . (2 23)
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Substituting Equation 2.23 into Equation 2.22 gives

C

fWa) f Yol)1 fz2 aT d

s1=0

CASE 11: 0 <a < /2

a(j-"2)

Frr(A) /i 2 (s 2 ) d) l ds 2

= J if2 (s2 ) h(s 2 ,a) ds 2

€ f (a) f / = 2s2 ' a h(s2a) ds2

2 = 0

Finally,

f.(a ~a(i -2) ) 2 don'na 2= 0 f2(82 ) fl ,-' (4- a)z - s

To summarize,

f 2(s2 472)2-,7-a 2 do 2  0 < s <4 (2.24)

in~sj = jo- ( , (Ar-a)a1
f fl(sl)f 2  dl# < < (2.25)
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2. 6 Evaluating E(A)

The gain is given by

A = <,r > (2.26)

Probability vector n can be written as

_ = no + sOu

or

S=- no+ w(t) U

Substituting into Equation 2. 26 given

6=<i ,r>+<-0 = .,>+<wlU, >

Since density hp(P) is assumed known, density fp(t) is known.

Therefore, E(4) becomes,

E()= f <wtU,r > p) dt + <n r > (2.27)

TN

where

wt) = nS(I - US)

Example 2.5: Consider a two state Markov chain with known

density fp(t) = fl(sl)f 2 (s 2 ). The reward vector is r. The expected

value of the gain using Equation 2. 27 and Equation 2. 19 is

E(A)= < ' f1 (u)f 2 s2 )dsds2 + <o r>
fz a+sl- 5 2

T2

38
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2.7 Ergodicity

N
* The concept of ergodicity in the set TN is developed next. If

a transition matrix has all non-zero entries, then it is ergodic [9].

Since the equation w = c(P) holds for all ergodic matrices P, the

equation s w(t) holds for all vectors t that represent ergodic

matrices. The subset of TN that corresponds to non-ergodic matricesN

must be identified. If this subset is assigned non-zero probability

mass by the matrix beta density, the technique of computing _

from fV(t) using _: w(t) may not be valid.

Take a vector p 1 N Probability vector p can be thought of

as a row of matrix P and is written as

P)-. +_ aU

1 -1 0 0 0

-1 0 ..... 0l.

(1, 0,...,0)+-- <se> sN4--

44<so e> P..si

S

If Pi =0 then'either i 0 or <s, e> = !, in the case where i-l.

NFrom the definition of set TN in set X, these two conditions place .

the resulting vector t on the boundary of TN

In the next Chapter the matrix beta density is defined. This

denFity assigna all its probability mass to transition matrices that

have all non-zero entries. Therefore, the matrix beta density

39



N

*, assigns zero probability to the boundary of TN. Recall that equation

s = w(t) does not hold on the bo-mdary of T . Therefore, the Inte- 4
N

gral of w(t) times the matrix beta density over TN exists. Further,

the method of computing fsl) from fp() using = w(t) is valid

i 6
Ip
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Chapter 3

COMPUTING THE EXPECTED VALUE OF THE GAIN

CONIITIONED ON OBSERVATIONS

In the last Chapter the uncertainty over the transition proba-

bilities was characterized by a general density function h p(P). In

this Chapter density hp(P) is specified'as matrix beta, Observations

x are recorded from the states of nature 0 . The posteriori density"-4

is computed using Bayes formula. The ekpec6ted value of the gain

conditioned on the observations is computed from the posteriori

density.

3. 1 The Matrix Beta Density

C11 The transition probabilities P = [Pij] are said to have the

matrix beta density with "parameter" M = (m i j] if P has the joint

density

N m

N k(M ) k l ij- P e A s

0 , elsewhere

The normalizing constant k(M) Is given by

6 N r(mi)
k(M) II

i-I 'I r(m ij)j=l

C whe re

41
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N 4
M= m i j

The "parameter" M is an NxN matrix such that m >0 i,j= ... ,N.

Notice that the rows of P are independent random probability

vectors when P has the matrix beta density. Therefore, the density

function can be factore d as

NI

where is the i row of matrix M. The probability density*

hl(p4 i i ) is given by

S N mi -1
hi (p jj.i j  (3.1) 0

(P4 Tijul

where

k(rni ) =

-n (m~J
j=l rmj)

Density hi(p, LI m ) Is the density over the ith row of matrix P, and Is

called the vector beta density with "parameter" mi .

The following statistics on are derived using the density

function in Expression 3. 1:
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I
M.

i) Ei) E(Pj1 ) - P= ""

ii) Var(i 1 ) ( (3.Z)

(Mi+ 1)

3. 2 The A Priori Density

The states ol! nature 0l in the ;:ease' of a single Markov chain is

iN

$just the not A . Th'e a priori density over AN is specified as the

matrix beta den.sity with "parameter" f,

(P M)

Given this definition, the poblem becomes how to specify the ele-
mets of matrior sti density reflects, in some way,

the a priori knowledgeq of the transition probabilities. Since the
transition vectors o are probabilistically independent, the rows of

8 M can be selected Independently. 
For example, suppose the value of m is specified as

rail =m12=. =miN m

The expected value of j is given by condition i) of Equation 3. 2,

GA

t( 43
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m

J=,

The magnitude of'm does not affect the expected'value. However,

the magnitude does affeit he variance; and 1'cbvarianice. Substituting

m i into condition ii)jand' ht) gives0

Var(1 ,), N=It P

OW 0%0

Cov(njPn)

As mn increases var(pjj) and coiv'P pf,) go'to--;0ro.

The example Illustrate* the fac~t that the relative proportonis
of'the ni1 will specify-the iX""'t"d vau fthe an leigjte

wil specify th variancedd4,"6"awiance. Ira ohwrdi s the0

expected valaje of1 the iwill be gi ,n by Tia -'wher~e of>, 

j The ragnitud6 of a spicifies'the varian.ceiand covariance.

ExaMple 3. 1 Consider a t~io state Markov chain,. Let0

in1 =M~ =k'

where k is a positive integer. The expected value of 'Pis given by
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The variance and covariance of are given by

1

Var(P i) = 4(k+11

SCOV(Pij Pin) -

The values of var(nj)_ and cov(~4-3 '%in) fbr several values of k are

listed !In Table 3, 1

F~ileach"Ai V10 ofik'the &istti' h1( 11m) i=19 2 ire given by

hili= k(mi) n (Pj)k - i

k(Lni) - I{k
r(k) r(;)

Density hi(P imi)can be drawn as in Figure 2.1, or can be trans-

formed to a density ftsi mi) as drawn in Figure 2.2. The details on

how fi(silmi)is computed is covered in Section 3.4. However, as

seen from Figures 2. 1 and 2.2 density fi(silmTi) has the same shape

as density hi(Pjimi) in 'the two state case, and therefore should cause

no confusion. The transformed density fi(sini) is drawn in Figure

3. 1 for several values of k. The density is seen to concentrate more

\ of its probability mass near s=0. 707 as k increases. This is equiva-

lent to saying that the covariance and variance are going to zero as

k increases.

The followirg method is proposed to choose matrix M in the

a priori density.

45
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Table 3. 1

k Var(Pij) Cov(Pij Pin) 0

1 0.05 -0.05

2 0.028 -0..028

5 0.012 -0.012

15 0.004 -0.004

L 30 0.002 -0.002

46
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7.0 7.0-

k=u30

-5.0 5.0-

3.0 3.0-

-ka 15

(0~ 0.2 0.6 1.01.

Figure 3.1 A Priori Density

474



1. If the transition probabilities are completely unknown

set

m = I i,j=l, N

2. If the knowledge of the transition probabilities is

more precise, select vectors m. i=l, ... ,N such

that the resulting expected values ELj) lie in the

expected range. Select the magnitude to be pro-

portional, in some way, to this knowledge.

43
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3. 3 The Posteriori Density

The posteriori density over AN is computed from the a priori I
density, observations taken from the Markov chain, and Bayes'

formula. Let (x = Ix, XI be a sequence of states observed I
C from the N state Markov chain where x 0 , the initial state, is known.

The probability of observing x is given by p px
Px .1 n-IX n

where p is the probability of making a transition from state i

to state j in sequence x . Let f.. denote the number of transitions-n 1
observed from state I to state j in sequence x . The NxN matrix

F = fij] is called the transition count matrix of the sample x

The conditional probability of observing xn given a P e AN is

denoted by 1(x IP) where

U3In 1P) Pxx ...px x

N
[ (Pij) fij

j=l

The function 1(x IP) is called the likelihood function.

The posteriori density over AN, denoted by g(PjX), is com-

puted using Bayes' formula

1(x IP) g (P)-npl . fAN I (x IP) Co(P) d

1 N

Ni (Pij)mij ij,~ fAN  I ~nP) o(P) dP I =I

N Zn 0

fA i=j
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Thus, g(P x ) has the same form asa the matrix beta density with

parameter M+F. Since ZPxn)PI (~xn)hstefr

~(j~ =~ (P IM+r) (3.3)

Martin (9] proved that as the number of observations goes to infinity

the ensiyMf (P IM+F) will concentrate on one P e AN

3. 4 The Posteriori Density fP(tl M+F)

This section deals with the transformation of fMO(PIM+F) to

Given the matrix beta density over AN

fi~(P IM+F) =hl, 1 ltf 1j).. .hN(P-N 1 N+-f)

the corresponding density over TN

ts derived by transforming the factored density h1 (k 1 Irni+fi) to the

factored density f(jr+iInstead of transforming f N0 (P I M+F)

to fY(I M+F) directly. A basis for E N is given by x' = fX, Trot

Transition probability vectors pihave the following representation

in basis XI

4
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The transformation that takes N vectors in the natural basis to N

*vectors in basis X' Is the NxN matrix V'

v9 [v _eT]

C Therefore,

il~I N-l)(Pilp -PiN ) V1

C :(<PI i v>,...,<,N. >, <,e >

The 3acobian of this transformation is the NxN matrix J where

Ti+V
C The density fl(lSj+fi) is given by

1i 1,n fI hi ILo04 $1U m.+f,(34

Therefore

fL(tIM+F)= n Tm hi(- !+'Umi+f) (3.5)
il

Example 3. 2: Consider a two state Markov chain. Density

fLO(P I M+F) I given by

f2 (PIM+F) = hl(Ptw_+4) h 2(pIni_+-)

where

51
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r(Mi+F) M. +fi mi+f
= r(mil+fil)r(m1 2+i 2) PilP i2 i=1,2

The density over T 2 fp(tIM+F) is given by

f I(tM+F) = fl_ I I +fL1 ) f 2 (! 21'_ 2+1 2 )

0

where
fFsn+f' r(Mi+Fi) ( Amil+fil x

jr(mtl+fil)r(mi2+ft2 ) 0

(3.6)
(si)mi2 +fi 2 i=1,2

and

det (J = det [ 1

3. 5 The Posteriori Density f

The posteriori density over TN fr(suIM+F) is computed from

the posteriori density over TN fp(tI M+F) using the results of

Chapter 2. Density f,(slM+F) is given by

f"(s IM+F) FN, (a)

1. N-i a=s
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where* I'
Fr(a) = 9 ipt1M+F) dt

w (A)

W(A) t 9TN ~B.: 1

i, Consider the special case of a two state Markov chain. Density

fn(IM) is computed by substituting Expression 3.6 with F = (0 into

Equations 2.24 and 2.25,

-ld(M) 21 22-1 2

8 2l=0 Jr

JM

w ek'(M) k( ) -4M 8M2

The above expression can be manipulated to get

4-)

It

53

f (a



ff7(SIM) (3.7)

M2 1 +MI2-1

Si=o0

if +j+m2 2

fYIJ =2

M12+M1- O 8 9) M1+ 1,

E xs = 2~~
i=o

znl-i Mns -)f1l

j=O 2 2)(~~L-

(pij 4 =~~l+I
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f~~ ~ rol oll-

m 22-1 2 2 -1

j=0 - I
Example 3. 3: Consider a two state Markov chain. The a priori

density is matrix beta with parameter M given by

Desnity f(91M ) as specified in Expression 3.7 is

fM(" ) + i-(1 - +] '<s<

Density f s M) is drawn in Figure 3.2.

Example 3.4: Consider a two state Mvarkov chain with tran-

C. sition matrix

0.8 0.2

0.5 0.5

The steady state probaWlity vector n is

55
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TV = (5/7 5/7)

and its representation in T2 is the scalar a,

s = 0.404

The a priori density over P is defined as matrix beta with parameter

M,

The transition count matrix F was computed from observations taken

from a computer simulation of the above defined Markov chain.

Matrix F at 100 transitions was

74 161
F"

16 19

I
and at 250 transitions it was

F 141 35
F:

* [34 40

The posteriori density fT(s JM+F) was computed by numerically

integrating Equation 3.7 with M replaced by M+F. The resulting
I

densities are drawn in Figure 3. 3. The posteriori density Is indeed

concentrating on s = 0.404.
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fir (S) few(S)

0

8.0 O8.0
I00 tro~neltlone

0

6.0 -6.0 o

- ... . .f

4. 4.0

0

50 transitions

2.0 -2.0.
a priori

Fdonsity

SB

ie3.3 Density f(sM+F)
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Example 3. 5: Consider another two state Markov chain with

matrix P given by

0.9 0. ir
Vector T is

T (0.9 0.1).

0
and its representation in T2 is given by ,the scalar s where

s = 0. 1414

The a priori density is specified as matrix beta with parameter M,

Q M[ z ]

Matrix F at 50 transitions was

51z

and at 100 transitions It was

88 9

8912

Density r(sIM+F) is drawn in Figure 3.4. The probability mass is

concentrating at s 0. 1414.
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f Ir(S) f 7r(S)

8.0 8.0
~-250 transitions

6.0 -6.0

4.0- -4.0

~-e00 transitions

2.0- -2.0

-a priori density

0 0.4 0.8 1.2

Figure 3 .4 Density f1 .(s M+F)
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3.6 The Expected Value of the Gain

The expected value of the gain conditioned on the observation

x follows directly from Equation 2. 3,

E Ix) L <w(tl)U,r > fp(tIM+F) dt + r > (3.8)

T N
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Chapter 4

APPLYING BAYESIAN DECISION THEORY

In this chapter there are K decisions. Each decision specifies

a unique transition matrix and reward vector. The transition

probabilities are unknown. In order to apply Bayesian decision

theory the states of nature, a priori density, observation, and loss

function have to be specified. With these elements the risk associ-

ated with each decision can be computed. The decision maker chooses

* 1 the decision that minimizes his risk.

4.1 Elements of Bayesian Decision Theory

The states of nature was defined as the set

;o4

0= A A ..,

where A = AN the set of all possible transition matrices underL

decision i. An element W of set Dis

w = (PI P2#'"'P

where P. is the NxN transition matrix under decision i.

The a priori density Is defined as the product of matrix beta

densities with parameter M I = ,...,K.
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The observation x is given by the sequence,

-n n -nK

-x= "nl' n2'"" ~

where

K
n= ni

and x i is the sequence of states observed under decision i,-n.
L

I X o' x 1,.. , x

where

' :)I< Jul<..IIt.. Kfl

The posterlori density Is derived from Equa' i 1.3,

gI(wX) f (P I M I +F I.). f N pK MK+FK) I. 1

The loss function L(lI w) was defined In Equation 1. 1,

L(i w)= max (<0(P3 )rJ> -<o(PL), >}
j 

>6
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To select a decision after a finite number of transitions a risk is

computed for each decision. The decision maker selects the decision

that minimizes the risk.

There are two problems in using this technique to select a

decision. First, a sampling strategy has to be specified. The

sampling strategy involves the number of transitions recorded under

each decision and manner in which one decision is switched to another.

Second, a stopping rule has to be specified. State transitions cannot

be observed forever. Some rule that indicates when enough informa-

tion has been collected is needed.
C,

In the case where the decision process makes a finite number

of transitions the sampling strategy is crucial. Two goals must be

kept in mind when sampling. First, the information gained through
CI

sampling should be maximized and second, the payoff should be maxi-

mized. In the case where the decisin process makes an infinite

number of transitions the sampling strategy is designed to maximize

the information while neglecting the payoff during the finite sampling

period.

In this dissertation the decision process makes an infinite

number of transitions. Since the central issue is computing the risk,

the sampling strategy adopted here is simply to sample equally under

each decision before selecting the risk minimizing decision. A

stopping rule is not specified.

The risk is defined as the expected loss,
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,, max {. >} -<aJP), r ,(W x,

C2 j-

In Chapter 1 it was shown that the risk minimizing decision k*

minimizes the function 11l(k),

' i Ai(k*) m min f 1i k))

where
w ei(k) = E(kI n -n E(Aiix n) 

(1.6)

Substituting Equation 3. 8 with decisions into Equation 1. 6 gives the

desired minimizing function,

I1(k) <Ti ,r -r > + ,~ _k> fpLIkkF -

TN'N (4.1)

- f <w(t) U, ri>flt.Mi+Fi) dt,

k = 1,...,K

1<i<K

4.2 Howard's Toymaker Example 7

The following example was used by Ron Howard 7) to illustrate

the procedure used in selecting the decision that maximizes the gain.

An example of a Markov decision process can be thought of as the

toymaker's process. The toymaker is involved in the novelty toy

business. He may be in either of two states. He is in the first state

if the toy he is currently producing has found great favor with the

A
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public. He is in the second state if his toy is out of favor. Suppose

that when he is in state 1 there is pl1 percent chance of his remaining

in state 1 at the end of the week and, a 1 - pl1 (=p1 2 ) percent chance

of a transition to state 2. When he is in state 2 he experiments with

new toys, and he may return to state 1 after a week with probability

p2 1 or remain unprofitable in state 2 with probability P2 2 . A tran-

sition diagram of the system showing the states and transition proba-

bilities in graphical form is

12

SPl p 2 2

-l ~PP2,

The transition matrix P is given by

Pll P12P=

P21 P22

When the toymaker has a successful toy he earns r1 units for that

week, and if his toy is unsuccessful he earns r2 units for that week.

L Suppose now that the toymaker has other courses of action

open to him that will change the probabilities and rewards governing

the process. When the toymaker has a successful toy he may use

advertising to decrease the chance that the toy will fall from favor.

However, because of the advertising cost, the profits to be expected

per week will generally be lower. To be specific, suppose that the

probability distribution for transitions from state 1 will be
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= (0, 8 0.2) when advertising is employed, and that the corre-

sponding reward wil be r1  4. The toymaker has two alternatives

when he is in state 1: He may use no advertising or he may adver-

tise. These alternatives will be labeled I and 2, respectively. Each

alternative has its associated reward in state I and probability dis-

tributions for transitions out of state 1. Alternatives will be indicated

by superscript. Thus, for alternative I in state 1, p = (0.5 0.5),

2 2r= 6; and for alternative 2 in state 1, =(0. 8 0. 2), r = 4.

There may also be alternatives in state 2 of the system. In-

creased research expenditures may increase the probability of

obtaining a successful toy, but they will also increase the cost of

being in state 2. Under alternative 1, a limited research alternative,

the probability distribution is pi = (1). 4 0.6) and the reward is

r = -3. Under the research alternative, alternative 2, the proba-

bility and reward distribution is 2= (0.7 0.3) and r2 = -

The alternatives for the toymaker are presented in Table 4. 1.

A decision is defined as a vector of alternatives in each state.,

Therefore, there are four decisions. Decision one is defined as

alternative I in state I and alternative 2 in state 2, and so on. Each

decision specifies a transition matrix. For example, decision 3

given by alternative 2 in state I and alternative 1 in state 2, gives

the following transition matrix,

10.8 0.2

3 0.4 o.6]
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The corresponding steady state probability vector is

3
i3 = (0. 667 0.333)

and, the gain or expected payoff isV
A3 = 2/3(4) + l/3(-3)

= 1.67

The steady state probability vector and gain for each decision is

listed in Table 4. 2. If the decision maker has perfect knowledge

3 . of the transition probabilities he will select decision 4, the decision

that maximizes his expected payoff.

Now, assume that the transition probabilities are unknown.

The states of nature are given by

, '2 2 9){2=A { , A2 A2 A2

The a priori density is

2 2

(W) = f2(PI M). .. f(P4M)0 M fio M )

where the "parameter" M is selected as

2 2

2]2

The Markov chain defined above was simulated on the computer and

was observed using the following sampling strategy. Ten transitions
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are recorded under each decision. The decisions are switched from

decision 1 to decision Z to decision 3 to decision 4 to decision 1, and 0

so on. The transformed risk function I(l) is computed from

Equation 4. 1. The values of 11(k) k = 1,..., 4 are plotted in

Figure 4. 1 every ten transition sequence. The results show that

the risk minimizing decision k* Is decision 4, the decision that

maximizes the gain.
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Table 4.1

Transition Vectors and Rewards

SA aTransition Vector Reward'State Alternative f- k kP1  __k Pi 1 P12 ri

(L

1 1 0.5 0.5 6

1 2 0.8 0.2 4

2 1 0.4 0.6 -3

2 2 0.7 0.3 -5

Table 4. 2

Steady State Probabilities and Gains

Decision Alternative in Alternative in k k
k State I State 2 IT I Tk

14/9 5/9 1.0
- 2 1 2 7/12 5/12 1.42

3 2 1 2/3 1/3 1. 67

4 2 2 7/9 2/9 2.0
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Chapter 5

BAYESIAN DECISION THEORY WITH THE UNCERTAINTY

OVER THE STEADY STATE PROBABILITIES

Once density fP{tlM+F) is specified, the transformed risk

function (k) is evaluated by integrating in the set TN. As N gets

large this task becomes increasingly more difficult and time con-

suming. As an alternative, the a priori density could be placed over
the steady state probabilities rather than the transition probabilities.

This approach greatly reduces the computational exercise. In this

case the states of nature are defined as

and the a priori density is

N0 W)=f mtl m )... fNBtK m)

NILeref V Jli) in the vector beta density with "parameter" mn and
in given by hi(Pi Imi}) In Equation 3. 1 with Pireplaced by i

The posteriori density Is also vector beta with "parameter"
M m +fS 1 1-'21...,K

I N KImK+ 1
C( f N , f- ljil+f )...f (V. l

Observation x is the same as defined In Chapter 4. Vector' fI in
called the frequency count vector. The j component of f Is the

number of times state j is observed under decision I in sequence

X7. 3
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The loss function for this case is also the same as defined in

(hipter 4. The decision maker chooses the decision k* that mini-

mizes, Ili(k) . ':he expected value of the gain E(6kIx) is computed

as

E.(A < xInk I a), r._ i _k >
(k I In 'E(rrIk

The expected value of .k is giver. by the properties of the matrix

beta density in'Equation 3.2, D

E( klx I, (mk + fk)

where

'k"
N

Therefore, 11(k) is given by

i 1 kk k 1 iii
-(k - +, r>--< rn',f r > (51

Yk

This exprerision Is easy to evalute. No integration operation is

ii
required. Vtectors m i i = 1, . .. ,K are specified when the a priori

density im defined, and vectors f i = 1,..., K are deined by the

sequence x observed from the Markov chains.

The critical assumption made in this approach is that the

Markov chain being observed is in steady state. However, the

Markov chain under observation may not be in steady state. Since

the transition probabilities are unknown, the probability distribution

over the states is unknown.
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Suppotie tnat the Markov chain under considaration has beam

K operating under decision 1 for a large number of transitions. As,,une

that the probability distribution over the states is _ 1, the steady

state probability distribution. Now, decision 1 is switched to decisioni
m. The probability distribution over the states after n transition is

m ''n

If observations are recorded before Ttm(n)-n then the posteriori

distribution over the states of nature will not accurately reflect the

knowledge of the steady state probabilities. The question arked i3:

How many transitions are required before Trm(u) is "close enough"

to TTm so that observations can be recorded? This question will be

answered for srecial classes of Markov chains in Chapter 6, but

ander conditions of perfect knowledge of the transition probabilities.

Since the transition probabilities are unknown, these results cannot

be used. Aside from these theoretical problems, this approach has

great practical appeal, especially for Markov chains with larg

numbers of states.

Example 5.1: The following two state, two decision example
S is presented to indicate that the approach presented in this Chapter

does give good results. The a prior% "parameters" mI and m are

given by

r (," =(2 2)

Tha transi.ion matrices simulated were
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0.5 0.&

0.4~* 0.6J
0. 5 0.5]

P2 0.7 o3

and the rewards were

r i  -(6 -3)

r 2 (6 -5)

The sampling strategy chosen was to sample twenty transitions under

each decibion. When one decision was switched to another, the first

ten transitions were not recorded to allow the probability distribution

to near steady sta -L The transformed risk 1l(i) is given by

I~)(1) =0O

I 11 1 2 21i(2) .-cml f 1, r>-- <m2+f 2, r->
eI - a12  -

Variable 111(2) is plotted in Figure 5. 1. As the number of observa-

tions increased, 1I(2) approached its true value of -0.42.
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Chapter 6

CONVERGENCE PROPERTIES OF

TWO STATE MARKOV CHAINS

*i

Given an ergodic transition matrix P and an initial state proba-

bility vector !1(o) the state probability vector after n transitions,

!E(n), is given by

!!(n) - 1(o) pn (6.1)

As n approaches infinity, vector !I(n) asymptotically approaches the
steady state probability vector T. Using sets TN and TN , the con-

vargence rate of !I(n) to Tr for two state Markov chains can be stated

explicitly.

In order to determine convergence of 2(n) to r both probability

vectors must be transformed to vectors in TN. Vector T(n) can be
4N'

written as r 0 + s(n) U. For convenience, vector 1To0 is defined as the

steady state probability vector Tr. Using this definition

_11In) r + _1(n) U !

and vector !I(n) -v7 becomes

n_(n) - Ts(n) U .)

t The next step is to evaluate vector s(n). From Equation 6. 1

17(n) =17+ E(n) U 4

C -(1 + 8(o) U) Pn
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or

s~)s~)UppV (6.3)

Matrix P can be written as

P =PO + SU

Similarly, matrix Pn can be written as

P n ~P 0 + S(n) U (6.4)

Substituting Equation 6.4 into Equation 6. 3 gives

st(n) s.(o) UP V +.t(o) 135(n) UV

= s(o) 135(n) (6.5)

Matrix S(n) can be evaluated by manipulating the identity

th+ l = p ' 1 p 
(6.6)

The I row of Expression 6. 6 satisfies

n+1 n

or

S+ s.(n+l) U (n + s(n) U)P

and

s!i(n+l) =s.(n) UPV

ThereforeI

S(n+l) S(n) UPV (6.7)

80



Substituting the identity PV = S + Po V into Equation 6.7 gives

S(n+l) S(n) US + S(n) UP V0

= S(n) US

or

S(n+l) S(1) (US) n

S(US)n  (6.8)

Substituting Equation 6. 8 into Equation 6. 5,

s(n) = i(o) US (US)n "1

IU
= s(o) (US) (6.9)

Substituting Lquation 6, 9 into Equation 6. 2 gives the desired ex-

= pression,

!I(n) - TY = (o) (US) n U (6.10)

£ Consider a two state Markov chain. "Matrices" S and U are

given by

("1)
S = s

Substituting these expressions into Equation 6. 10 gives

r_(-) - T_ =I_(o) <_a, u >P u

-(<_, u>n s(o) _u

81



Expression <s, u >n s(o) is given by

<s,u> n s(o) = (<n(o)- IT,v>

where

V -

Therefore, Eqt.ition 6. 10 for two state Markov chains becomes

1(n) - 1 n(O) > u (6.11)

The rate of convergence of Tr(n) to 1r can be determined by

finding the integer N such that I T(n)-17 I is less than some small

number s for all n > N. The norm for two state Markov chains is

I j2(n)-T l I <2(O !! X >

since ull = 1. Letting I1!!(n) - _ e = € and solving for n results 0

in the expression

log
1 = -! -(6.1 )

log 2T 1

The expression for 21(n) can be used to investigate the con--I

vergence of transition matrix Pn to the limiting matrix P . For two
n n n

state Markov chains, the two transition vectors of P, P. ]. are
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written as

n T = - + st(n) U

2 = r + S2 (n) U

Convergence of pFn to p" in set A2 is equivalent to the convergence

of vector t(n) to a = (S, S) in set T 2

St(n) (= (l n), t (r))

s - 0),Z>

where the expressions for scalars aI(n) and s 2 (n) are derived

rather simply from Equation 6.9,

u,(n) =s,(o) (US)n (6.13)

82(n) = 92(o) (US) n  (6.14)

where

61s(o) =l, <(E1 - 7),V > (6.15)

s2() = a E2<(P- " 1), v > (6.16)

Equations 6. 13, 6. 14, 6. 15, and 6.16 combine to form vector t (n),

t(n) -t(US)

or

t(n) (2 1 (6.17)
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Example 6. 1: Consider a two state Markov chain with tran-

sition matrix

1/[i2 1/21
[1/4 3/ 4J

Vector T is defined by-0

-o0TT iT (1/3, 2/3)

Therefore, set T 2 is defined by

Vector t(n) in Equation 6.17 Is

i ii

I

'8
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11 Chapter 7

SUMMARY AND RECOMMENDATIONS

* The development presented in this dissertation is summarized

SB in this Chapter and topics for future research are proposed. The

objective of this research was to apply Bayesian decision theory to

the Markov decision problem with unknown transition probabilities.

6The Markov chain under consideration had N states and made an

infinite number of transitions. There were K decisions. Each de-

cision I specified a transition matrix P and reward vector r . The

states of nature Q were defined by

AN'~. .., N)

The a priori density over 0, Co0(w) was matrix beta. Then the

posteriori density g(w Ix ) was computed from the a priori density,

-- nobservation ,and Bayes formula. The loss function L(i[ 1) speci-

fled the loss per transition when the state of nature was w and

decision i was selected. The risk function p(i) was defined as the

expected loss

P(i)f(1w) 9w3n)d

The risk minimizing decision k* was shown to also minimize function

£(k) where

11(k) E(t iE(A n)

Therefore, decision k* satisfies
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11 (k*) =min E(,&kIx)-E(Ajix)

where

E(Ak) f <'EQ)U, rk > f( (I Mk+F k )dt +< r1_ k >

T N-N

T N=T x ... xTN (N times)
N NN

TNS eEN*1lsU!-- Pell
N-00-N

1

p 0

[IN]

V = ~ !N

1223 ADT

Tr~j

kt h

Sf.~ rwo
IN1,
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f k =ith row of Fk
-1 V

I ~ ~~~hi(-ro+siU. _i4 f k ). . k(mkLnki- +J=[iI (.T o+.<i, Uzjmifi-

Nss mk-0li3
k~k k

The objectives of this research were met. A simple solution|I
to the Markov decision problem with uncertainty has been derived.

However, the problem is not completely solved. The following is

a list of topics that require future research.

1. The problem of selecting an "optimal" sampling strategy

and an "optimal" stopping rule is a candidate for future

research. Martin discusses this problem at length.

However, his results do not appear to be amenable to

a practical application. It is possible that this problem

covIld be successfully analyzed by using the framework

IC developed in this dissertation.

2. In this paper the Markov decision process under con-

sideration was an infinite stage process. The case where

the Markov chain makes a finite number of transitions

should be analyzed. Here the sampling strategy will be

of primary importance because two goals will be present

during the life of the process. One is to maximize the

payoff and the other is to maximize the information. In

87



the infinite stage pr-ocess the payoff was not an issue

since the Markov chain would make an infinite number

of transitions after a decision was selected.

3. The case where the uncertainty is placed over the ,

steady state probabilities was discussed in Chapter 5.

This approach simplifies the computations considerably.

However, errors are present because the decision maker

does not know whether the Markov chain Is in steady

state. If some means of approximating the time when

steady state is "nearly" -eached were found, this approach -

might be more practical for a Markov chain with a large

number of states.
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